找回密码
 立即注册
查看: 2704|回复: 0

【转载】总结下R语言进行简单多元回归的基本步骤

[复制链接]
发表于 2014-5-10 01:35:09 | 显示全部楼层 |阅读模式
本帖为转载,原文请看:http://blog.sina.com.cn/s/blog_6ee39c3901017fpd.html

最近论文,刚好研究下R的回归分析。作此笔记,以便将来参考。
1.读入数据,R-STUDIO直接有按钮,否则就
> zsj <- read.csv("D:/Paper/data/zsj.csv")
数据一般从excel的CSV或者txt里读取,实现整理好以符合R的数据框的结构

ps1:这块有很多包提供从不同来源读取数据的方法,笔者还得慢慢学。。

2.画相关图选择回归方程的形式
> plot(Y~X1);abline(lm(Y~X1))
> plot(Y~X2);abline(lm(Y~X2))



可见X1与Y的关系是明显的线性的,X2也类似此处省略

3.做回归,并检视回归结果
> lm.test<-lm(Y~X1+X2,data=zsj)
> summary(lm.test)

Call:
lm(formula = Y ~ X1 + X2, data = zsj)

Residuals:
     Min       1Q   Median       3Q      Max
-0.21286 -0.05896 -0.01450  0.05556  0.30795

Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.0931750  0.0109333   8.522 5.85e-16 ***
X1          0.0109935  0.0003711  29.625  < 2e-16 ***
X2          0.0099941  0.0010459   9.555  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.08109 on 327 degrees of freedom
Multiple R-squared: 0.7953, Adjusted R-squared: 0.7941
F-statistic: 635.3 on 2 and 327 DF,  p-value: < 2.2e-16

可见各项显著性检验都是得到通过的

4.用残差分析剔除异常点
> plot(lm.test,which=1:4)










得到的四个图依次为:
4.1普通残差与拟合值的残差图
4.2正态QQ的残差图(若残差是来自正态总体分布的样本,则QQ图中的点应该在一条直线上)
4.3标准化残差开方与拟合值的残差图(对于近似服从正态分布的标准化残差,应该有95%的样本点落在[-2,2]的区间内。这也是判断异常点的直观方法)
4.4cook统计量的残差图(cook统计量值越大的点越可能是异常值,但具体阀值是多少较难判别)

从图中可见,54,65,295三个样本存在异常,需要剔除。

5.检验异方差

5.1GQtest,H0(误差平方与自变量,自变量的平方和其交叉相都不相关),p值很小时拒绝H0,认为上诉公式有相关性,存在异方差
> res.test<-residuals(lm.test)
> library(lmtest)
> gqtest(lm.test)

Goldfeld-Quandt test

data:  lm.test
GQ = 0.9353, df1 = 162, df2 = 162, p-value = 0.6647

5.2BPtest,H0(同方差),p值很小时认为存在异方差
> bptest(lm.test)

studentized Breusch-Pagan test

data:  lm.test
BP = 3.0757, df = 2, p-value = 0.2148

两个检验都可以看出异方差不存在,不过为了总结所有情况这里还是做了一下修正。。

6.修正异方差
修正的方法选择FGLS即可行广义最小二乘
6.1修正步骤
6.1.1将y对xi求回归,算出res--u
6.1.2计算log(u^2)
6.1.3做log(u^2)对xi的辅助回归 log(u^2),得到拟合函数g=b0+b1x1+..+b2x2
6.1.4计算拟合权数1/h=1/exp(g),并以此做wls估计

> lm.test2<-lm(log(resid(lm.test)^2)~X1+X2,data=zsj)
> lm.test3<-lm(Y~X1+X2,weights=1/exp(fitted(lm.test2)),data=zsj)
> summary(lm.test3)

这里就不再贴回归结果了

7.检验多重共线性

7.1计算解释变量相关稀疏矩阵的条件数k,k<100多重共线性程度很小,100<k<1000较强,>1000严重
> XX<-cor(zsj[5:6])
> kappa(XX)
[1] 2.223986

7.2寻找共线性强的解释变量组合
> eigen(XX)#用于发现共线性强的解释变量组合#
$values
[1] 1.3129577 0.6870423

$vectors
          [,1]       [,2]
[1,] 0.7071068 -0.7071068
[2,] 0.7071068  0.7071068

8.修正多重共线性---逐步回归法
> step(lm.test)
Start:  AIC=-1655.03
Y ~ X1 + X2

       Df Sum of Sq    RSS     AIC
<none>              2.1504 -1655.0
- X2    1    0.6005 2.7509 -1575.8
- X1    1    5.7714 7.9218 -1226.7

Call:
lm(formula = Y ~ X1 + X2, data = zsj)

Coefficients:
(Intercept)           X1           X2  
   0.093175     0.010994     0.009994

可见X2,X1都不去掉的时候AIC值最小,模型最佳。

ps2:step中可进行参数设置:direction=c("both","forward","backward")来选择逐步回归的方向,默认both,forward时逐渐增加解释变两个数,backward则相反。




回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|R语言中文网

GMT+8, 2024-11-25 09:41 , Processed in 0.019351 second(s), 18 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表